Version: A

Date: 11-02-2021

Page: 1 van 13

Version: A

Date: 11-02-2021

Page: 2 van 13

General:

The purpose of this instruction is to get started quickly with the Profinet-Gateway. This instruction describes how to control an Ethercat drive from a Siemens PLC via the Gateway.

The gateway itself can be seen as a black box and is therefore not described in this instruction, only the hardware connections will be described.

Explanations of Ethercat drives are beyond the scope of this instruction and will therefore not described. For this reference is made to the relevant manuals from Estun and Leadshine.

Principle and operation:

The principle of controlling an Ethercat drive is based on "Drive-based" control. This means that various Ethercat objects are provided with data. This data can include position, speed, acceleration, deceleration, mode or operation, etc.

These objects are described via the gateway from a Profinet master.

The gateway consists of 64 channels, each channel can communicate with the Profinet master, these 64 channels are split into 32 channels for writing/reading and 32 channels for writing.

These 32 write/read and 32 write channels are then divided into Object channels and data channels.

This means that 1 channel is used to read a particular Ethercat object and another channel is used for the associated data.

The same applies to writing, 1 channel for the Object to be written and the other channel the data associated with the object to be written.

Version: A

Date: 11-02-2021

Page: 3 van 13

This is shown in a block diagram below:

Version: A

Date: 11-02-2021

Page: 4 van 13

For writing it will look like the picture below:

TABLE(33)_WRITE_OBJECT17	0	33	144147	Output 2 word
TABLE(34)_DATA_OBJECT17	0	34	148151	Output 2 word
TABLE(35)_WRITE_OBJECT18	0	35	152155	Output 2 word
TABLE(36)_DATA_OBJECT18	0	36	156159	Output 2 word
TABLE(37)_WRITE_OBJECT19	0	37	160163	Output 2 word
TABLE(38)_DATA_OBJECT19	0	38	164167	Output 2 word
TABLE(39)_WRITE_OBJECT20	0	39	168171	Output 2 word
TABLE(40)_DATA_OBJECT20	0	40	172175	Output 2 word
TABLE(41)_WRITE_OBJECT21	0	41	176179	Output 2 word
TABLE(42)_DATA_OBJECT21	0	42	180183	Output 2 word
TABLE(43)_WRITE_OBJECT22	0	43	184187	Output 2 word
TABLE(44)_DATA_OBJECT22	0	44	188191	Output 2 word
TABLE(45)_WRITE_OBJECT23	0	45	192195	Output 2 word
TABLE(46)_DATA_OBJECT23	0	46	196199	Output 2 word
TABLE(47)_WRITE_OBJECT24	0	47	200203	Output 2 word
TABLE(48)_DATA_OBJECT24	0	48	204207	Output 2 word
TABLE(49)_WRITE_OBJECT25	0	49	208211	Output 2 word
TABLE(50)_DATA_OBJECT25	0	50	212215	Output 2 word
TABLE(51)_WRITE_OBJECT26	0	51	216219	Output 2 word
TABLE(52)_DATA_OBJECT26	0	52	220223	Output 2 word
TABLE(53)_WRITE_OBJECT27	0	53	224227	Output 2 word
TABLE(54)_DATA_OBJECT27	0	54	228231	Output 2 word
TABLE(55)_WRITE_OBJECT28	0	55	232235	Output 2 word
TABLE(56)_DATA_OBJECT28	0	56	236239	Output 2 word
TABLE(57)_WRITE_OBJECT29	0	57	240243	Output 2 word
TABLE(58)_DATA_OBJECT29	0	58	244247	Output 2 word
TABLE(59)_WRITE_OBJECT30	0	59	248251	Output 2 word
TABLE(60)_DATA_OBJECT30	0	60	252255	Output 2 word
TABLE(61)_WRITE_OBJECT31	0	61	256259	Output 2 word
TABLE(62)_DATA_OBJECT31	0	62	260263	Output 2 word
TABLE(63)_WRITE_OBJECT32	0	63	264267	Output 2 word
TABLE(64)_DATA_OBJECT32	0	64	268271	Output 2 word

Picture 1: channels for writing objects

Version: A

Date: 11-02-2021

Page: 5 van 13

For reading it will look like the picture below:

TABLE(1)_READ_OBJECT1	0	1		8083	Output 2 word
TABLE(2)_DATA_OBJECT1	0	2	8487		Input 2 word
TABLE(3)_READ_OBJECT2	0	3		8487	Output 2 word
TABLE(4)_DATA_OBJECT2	0	4	8891		Input 2 word
TABLE(5)_READ_OBJECT3	0	5		8891	Output 2 word
TABLE(6)_DATA_OBJECT3	0	6	9295		Input 2 word
TABLE(7)_READ_OBJECT4	0	7		9295	Output 2 word
TABLE(8)_DATA_OBJECT4	0	8	9699		Input 2 word
TABLE(9)_READ_OBJECT5	0	9		9699	Output 2 word
TABLE(10)_DATA_OBJECT5	0	10	100103		Input 2 word
TABLE(11)_READ_OBJECT6	0	11		100103	Output 2 word
TABLE(12)_DATA_OBJECT6	0	12	104107		Input 2 word
TABLE(13)_READ_OBJECT7	0	13		104107	Output 2 word
TABLE(14)_DATA_OBJECT7	0	14	108111		Input 2 word
TABLE(15)_READ_OBJECT8	0	15		108111	Output 2 word
TABLE(16)_DATA_OBJECT8	0	16	112115		Input 2 word
TABLE(17)_READ_OBJECT9	0	17		112115	Output 2 word
TABLE(18)_DATA_OBJECT9	0	18	116119		Input 2 word
TABLE(19)_READ_OBJECT10	0	19		116119	Output 2 word
TABLE(20)_DATA_OBJECT10	0	20	120123		Input 2 word
TABLE(21)_READ_OBJECT11	0	21		120123	Output 2 word
TABLE(22)_DATA_OBJECT11	0	22	124127		Input 2 word
TABLE(23)_READ_OBJECT12	0	23		124127	Output 2 word
TABLE(24)_DATA_OBJECT12	0	24	128131		Input 2 word
TABLE(25)_READ_OBJECT13	0	25		128131	Output 2 word
TABLE(26)_DATA_OBJECT13	0	26	132135		Input 2 word
TABLE(27)_READ_OBJECT14	0	27		132135	Output 2 word
TABLE(28)_DATA_OBJECT14	0	28	136139		Input 2 word
TABLE(29)_READ_OBJECT15	0	29		136139	Output 2 word
TABLE(30)_DATA_OBJECT15	0	30	140143		Input 2 word
TABLE(31)_READ_OBJECT16	0	31		140143	Output 2 word
TABLE(32)_DATA_OBJECT16	0	32	144147		Input 2 word

Picture 2: channels for reading objects

Taking into account the minimum objects required for controlling a drive, a maximum of 8 axes can be controlled with 1 gateway. It must be taken into account that these axes cannot be started simultaneously. All channels are handled sequentially.

First the channels are handled for writing and then only if there is new data for that channel to write, then the channels for reading. Even then only if there is new data available.

Version: A

Date: 11-02-2021

Page: 6 van 13

It should be taken into account a delay time of about 10ms between the reading / writing of two successive channels.

As mentioned earlier, controlling a drive requires at least a few objects for reading and writing, these are the following objects:

For writing:

- Control Word
- Target Position

For reading:

- Status Word
- Current Positon

In view of the above, it can be said that four read and four write channels are at least required to be able to control a Ethercat controller. This means that a maximum of 8 axes can be controlled per gateway. In order not to switch too much between different objects, it is preferable to control 4 axes per gateway.

An object for writing is constructed as follows, the Object of the ControlWord 6040hex is taken as an example.

Index	6040 _h
Name	Control word
Object Code	VAR
Data Type	UINT16
Access	RW
PDO Mapping	YES
Units	
Value Range	
Default Value	0

Control word bit description:

15 11	10	9	8	7	6 4	3	2	1	0
manufacturer specific	rese	erved	halt	Fault reset	Operation mode specific	Enable operation	Quick stop	Enable voltage	Switch on

Version: A

Date: 11-02-2021

Page: 7 van 13

ATB Automation Mechanics | Motion Control

The object consists of:

- Node
- Index
- Sub_index
- Type
- Reserved
- Data

Node is the drive number: 1 t/m maximum 8

Index is het Ethercat object address, in this example for the ControlWord 6040h.

Sub_index is '0' in this example.

Type, is the data type of the object, in this example it is UINT16

Туре:	1	Boolean
	2	Integer 8
	3	Integer 16
	4	Integer 32
	5	Unsigned 8
	6	Unsigned 16
	7	Unsigned 32
	8	Real 32
	9	Visible String (N/A as this is read only)

Reserved is a spare place and is not used.

Data is the value that is written in the relevant object.

For example, if you want to write the value 0 in the Object 6040h (Controlword for the first drive, you must send the following from the Profinet master:

#Object.Object_Address[#uiObjectAddressWrite].Node := #iNode; (= 1)
#Object.Object_Address[#uiObjectAddressWrite].Object_address := 16#6040;
#Object.Object_Address[#uiObjectAddressWrite].Reserved := 0;
#Object.Object_Address[#uiObjectAddressWrite].Sub := 0;
#Object.Object_Address[#uiObjectAddressWrite].Type := 6;
#Object.Object_Data[#uiObjectAddressWrite] := 2#000000000000000;

Version: A

Date: 11-02-2021

Page: 8 van 13

Aangezien voor de Node, Object_address, Reserved, Sub en type een kanaal gebruikt wordt en voor de data een kanaal, schrijft men in TABLE(33) het node nummer, Object_address, Reserved, Sub en type en in TABLE(34) de data met als waarde 0.

TABLE(33)_WRITE_OBJECT17	0	33	144147	Output 2 word
TABLE(34)_DATA_OBJECT17	0	34	148151	Output 2 word

Voor het lezen van bijvoorbeeld het StatusWord gaat dit op dezelfde manier, echter daar worden de kanalen TABLE(3) en TABLE(4) voor gebruikt.

Index	6041 _h
Name	statusword
Object Code	VAR
Data Type	UINT16
Access	RO
PDO Mapping	YES
Units	
Value Range	
Default Value	

If we want to read the value of the Status Word via Profibus, the following must be sent to the gateway:

// Read Status

#Object.Object_Address[#uiObjectAddressRead+1].Node := #iNode; (= 1)
#Object.Object_Address[#uiObjectAddressRead+1].Object_address := 16#6041;
#Object.Object_Address[#uiObjectAddressRead+1].Sub := 0;
#Object.Object_Address[#uiObjectAddressRead+1].Type := 6;

#uiStatusWord := DINT_TO_UINT(#Object.Object_Data[#uiObjectAddressRead+1]);

Version: A

Date: 11-02-2021

Page: 9 van 13

ATB Automation Mechanics | Motion Control

Statusword bit introduction is as below

bit	introduction
0	Ready to switch on
1	Switched on
2	Operation enabled
3	Fault
4	Voltage enabled
5	Quick stop
6	Switch on disabled
7	Warning
8	Reserved
9	Remote
10	Target reached
11	Internal limit active
13~12	Operation mode specific
14	Reserved

TABLE(3)_READ_OBJECT2	0	3		8487	Output 2 word
TABLE(4)_DATA_OBJECT2	0	4	8891		Input 2 word

Version: A

Date: 11-02-2021

Page: 10 van 13

Example to set "Mode of Operation" to homing mode for drive 1:

To set "Mode of Operation" in Homing mode, proceed as follows.

The Ethercat Object for setting mode of operation is 6060h, see below:

modes_of_operation Servo drive's control mode is defined by modes_of_operation.

Index	6060 h
Name	modes_of_operation
Object Code	VAR
Data Type	INT8
Access	RW
PDO Mapping	YES
Units	
Value Range	1,3,4,6,7,8,9,10
Default Value	1

Value	Introduction
0	Not any control mode
1	PROFILE POSITION MODE
3	PROFILE VELOCITY MODE
4	PROFILE TORQUE MODE
6	HOMING MODE
7	INTERPOLATED POSITION MODE
8	CYCLIC SYNCHRONIZATION POSITION
	CYCLIC SYNCHRONIZATION VELOCITY MODE
9	(ProNet-DDDEG-EC only)
10	CYCLIC SYNCHRONOUS TORQUE MODE

Technical Instruction

Profinet-Gateway

Version: A

Date: 11-02-2021

Page: 11 van 13

The following must be sent to the gateway from the Profinet-Master:

// Set mode of operation to Homing mode

#Object.Object_Address[#uiObjectAddressWrite + 1].Node := #iNode; (=1)
#Object.Object_Address[#uiObjectAddressWrite + 1].Object_address := 16#6060;
#Object.Object_Address[#uiObjectAddressWrite + 1].Reserved := 0;
#Object.Object_Address[#uiObjectAddressWrite + 1].Sub := 0;
#Object.Object_Address[#uiObjectAddressWrite + 1].Type := 2;

#Object.Object_Data[#uiObjectAddressWrite + 1] := 6;

This can be controlled via the channels TABLE (35) and TABLE (36).

TABLE (35) for Node, Object_address, Reserved, Sub and type, TABLE (36) for the value, in this case 6.

The following block diagram shows motor control in Profile Position mode. (In this example this concerns an Estun Pronet-EC drive, for a different brand of drive some objects may be different)

Target Position (607Ah)	Position Electronic					
Software Position Limit (607Dh)	(6093h:01/6093h:02)					
Profile Velocity (6081h) Velocity	Velocity Electronic					
Max Profile Velocity (607Fh)	(6094h:01/6094h:02)	1	Positi	on Val	nitu To	
		Position -	contro	ol 🕨 con	trol - co	ntrol - Motor
Profile Acceleration (6083h)	Acceleration	Generator	loop	10	pop]	.00p
Profile Deceleration (6084h)	Ratio					
Quick Stop Deceleration (6085h)	6097h:01/6097h:02)				₽	\uparrow \perp
Controlword (6040h)						S
Quick Stop Option Code (605Ah)						
Motion profile type (6086h)						
	-					
Torque Actual Value (6077h)						
Valasita Asturl Value (606Ch)	Velocity Electronic					
Verocity Actual Value (dooch)	Gear Ratio (6094h:02/6094h:01)					
Position Actual Value (6064h)	Position Electronic			Position	Actual Internal	l Value (6063h)
4	(6093h:02/6093h:01)					
Following error actual value (60F4b)	Position Electronic		▼ +			
	Gear Ratio	<(◯◀⁼──			
Following Error Window (6065h)	(000011.02/000011.01)					
Statusword (6041h) Following Error						
Comparator						
Following Window Timeout (6066h)						
Position window time(6068h)						
Position Electronic	Position	- I				
Position Window (6067h) Gear Ratio	Reached	→				
(6093h:01/6093h:02)	Comparator					

Technical Instruction

Profinet-Gateway

Version: A

Date: 11-02-2021

Page: 12 van 13

Power supply, Profinet and Ethercat connection of the Gateway:

Version: A

Date: 11-02-2021

Page: 13 van 13

Disclaimer

All information provided by or on behalf of ATB Automation BV with regard to its products and services, whether in the form of data, recommendations or otherwise, is assumed to be reliable, but ATB Automation BV does not accept any liability with regard to the application, processing or using such information, products or services, or any consequence thereof.

