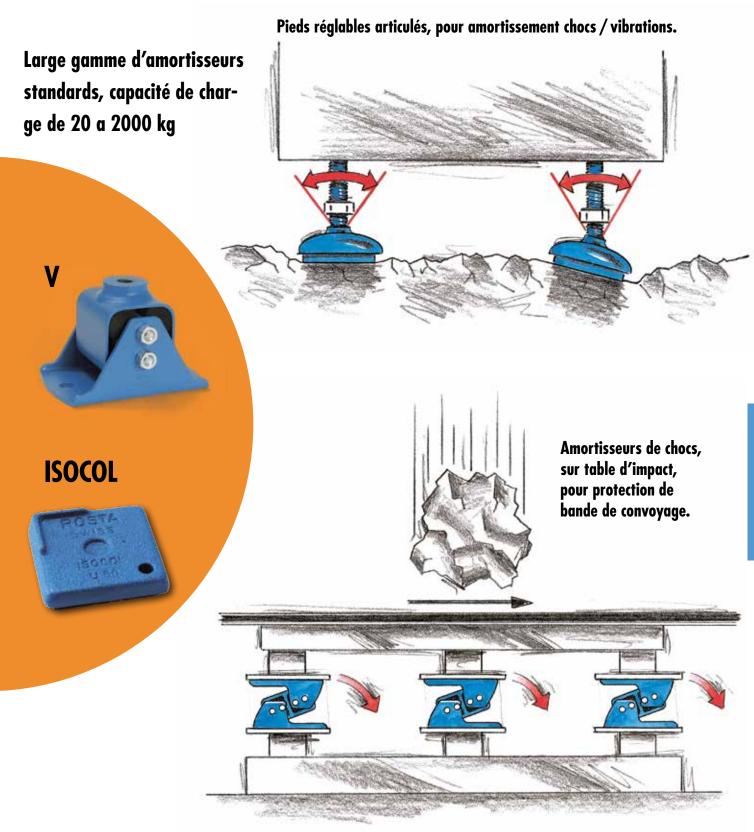

ROSTA - Eléments amortisseurs

La solution contre les vibrations, les chocs et les bruits solidiens

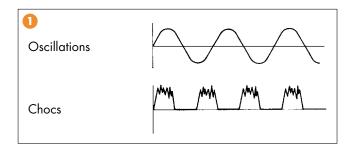

Eléments amor Amortisseurs de vibrations

tisseurs ROSTA

élastiques et sécuritifs.

Table de sélection des amortisseurs

Туре	Description	Détails	Illustration
ESL	Eléments antivibratoires pour charges en compression, traction et cisaillement. Idéal pour montage au sol, au mur ou au plafond. 8 tailles avec capacité de charge de 200 N à 19 000 N par élément. Fréquence propre entre 3,5 et 8 Hz. Utilisés pour les applications «hypercritiques» (fréquence machine > fréquence élément).	Pages 3.8 – 3.9	A.
V	Eléments antivibratoires pour charges en compression, traction et cisaillement. Idéal pour montage au sol, au mur ou au plafond. 6 tailles avec capacité de charge de 300 N à 12 000 N par élément. Fréquence propre entre 10 et 30 Hz. Utilisé pour les applications «hypocritiques» (fréquence machine < fréquence élément).	Pages 3.10 – 3.11	
N	Pieds antivibratoires constitués d'une plaque élastomère collée sous une coupelle et d'un dispositif de réglage de la hauteur. Le pied est articulé et permet de compenser des pentes jusqu'à 5°. Plaque résistante aux huiles et aux acides. 3 tailles avec capacité de charge de 1500 N a 20000 N par pied. Fréquence propre entre 19 et 25 Hz.	Page 3.12	
NOX	Pieds antivibratoires constitués d'une plaque élastomère collée sous une coupelle en inox et d'un dispositif de réglage en hauteur egalement en inox. Le pied est articulé et permet de compenser des pentes jusqu'à 5°. Plaque résistante aux huiles et aux acides. 2 tailles avec capacité de charge de 5000 N a 20000 N par pied. Fréquence propre entre 19 et 22 Hz.	Page 3.12	
Plaque de base type P	Plaque de base en fonte aluminium pour pieds N ou NOX; permet la tenue aux efforts de cisaillement et/ou le positionnement de l'installation au sol.	Page 3.12	•
ISOCOL	Plaque d'isolation vibratoire autoadhésive (2 cotés) pour petites installations (machines, équipements). Résistante aux huiles et agressions chimiques. Possibilité d'augmenter le pouvoir adhésif en appliquant un diluant cellulosique.	Page 3.13	
ISOCOL U	Plaque d'isolation vibratoire autoadhésive collée sous un support en fonte. Le support est équipé d'une empreinte au centre permettant le centrage d'une tige filetée de réglage et de butées laterales pour le positionnement sous la machine.	Page 3.13	Section 12


Technologie de l'antivibratoire.

Les fabricants de supports antivibratoires proposent généralement différents types de supports machines avec différentes fréquences propres afin de trouver le rapport idéal entre la fréquence excitatrice de la machine et la fréquence propre des amortisseurs.

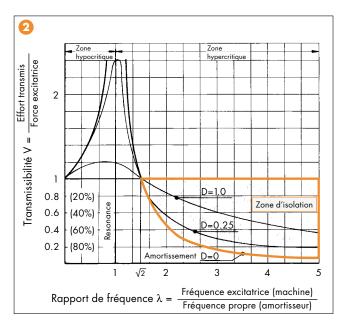
1. Isolation des vibrations et des chocs

En technique vibratoire on distingue principalement 2 types de signaux (fig. 1).

Les oscillations sinusoïdales/vibrations sont en général atténuées par des systèmes hypercritiques et les impacts/chocs par des systèmes hypocritiques.

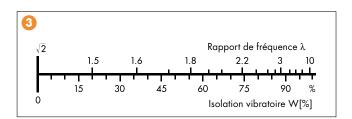
Rapport de fréquence λ (fig. 2)

$\lambda > \sqrt{2}$: Hypercritique

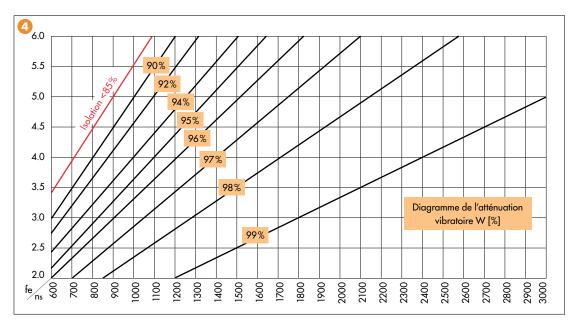

Bonne isolation des vibrations, efficacité quantifiable. Bonne isolation des bruits solidiens.

$\lambda = 1$: **Résonance**

Amplification des oscillations: préjudiciable à terme pour la machine et les amortisseurs.


$\lambda < 1$: Hypocritique

Isolation des vibrations non quantifiable (il faut procéder à des mesures vibratoires avant et après montage des amortisseurs).



Installations hypercritiques ($\lambda > \sqrt{2}$)

Dans les installations hypercritiques, le rapport de fréquence entre la fréquence propre des amortisseurs et la fréquence excitatrice de la machine doit être au moins égal à 1:1,414 ($\sqrt{2}$). En général les amortisseurs avec une déflexion (flèche) sous charge elévée ont une fréquence propre basse. La plupart des équipements, tels que les générateurs, compresseurs, ventilateurs, moteurs, sont installés en mode **hypercritique**, sur des supports relativement «souples». Le rapport de fréquence donne une idée du degré d'isolation vibratoire (en %) du système. Vous retrouverez le **degré d'isolation vibratoire** sur le diagramme ci-contre(fig. 3) (ou par le calcul et le diagramme fig. 4) page suivante.

Isolation vibratoire

$$W = 100 - \frac{100}{\left(\frac{n_s}{60 \cdot fe}\right)^2 - 1} [\%]$$

n_s = Vitesse de la source excitatrice (machine) (tr/min)

fe = Fréquence propre de l'amortisseur (Hz)

Zone de résonance ($\lambda = 1$)

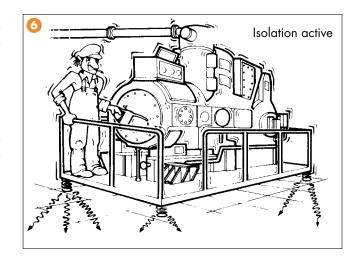
Lorsque la fréquence excitatrice d'un système est égale à la fréquence propre de l'amortisseur, on observe une amplification des oscillations qui peut conduire à la destruction de la machine et de ses amortisseurs (fig. 2).

Installations hypocritiques ($\lambda < 1$)

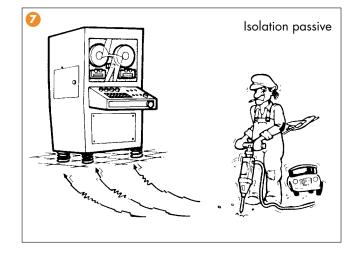
Dans les installations hypocritiques (fig. 2) les supports utilisés ont une rigidité mécanique élevée et une faible déflexion, c'est le cas par exemple de l'élément ROSTA type V. Ce type d'élément est capable d'absorber efficacement les chocs et les impacts générés par des machines dont les vitesses sont relativement faibles: mélangeurs, broyeurs, presses, cisailles, etc.

Dans les installations hypocritiques l'isolation des vibrations n'est pas quantifiable, c'est pourquoi il faut procéder à des mesures vibratoires avant et après montage des amortisseurs.

2. Isolation des bruits solidiens


L'isolation des bruits solidiens répond aux lois de la mécanique ondulatoire. L'efficacité de l'isolation dépend de l'inertie acoustique des matériaux (résistance acoustique ou résistance aux ondes = vitesse des ondes sonores x densité du matériau). Le tableau fig. (5) montre l'efficacité de l'isolation de certains matériaux et souligne une atténuation optimale sur toute la gamme de fréquence au moyen d'une combinaison caoutchouc-métal.

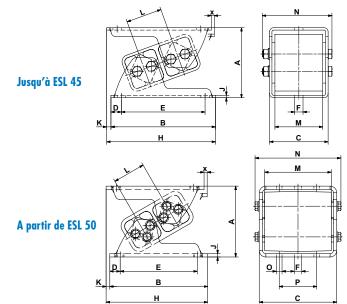
Inertie acoustique Acier 1:1
par rapport à l'acier: Bronze 1:1.3
Liège 1:400
Caoutchouc 1:800
Air 1:90000



3. Isolation passive et active

L'isolation active ou directe (fig. (i): consiste à éliminer directement sous la machine les signaux perturbateurs émis par celle-ci, c'est-à-dire empêcher la transmission de vibrations, d'oscillations ou de chocs aux fondations, structures voisines, bâtiments.... Pour une sélection optimale du support antivibratoire, les paramètres à prendre en compte sont: fréquence perturbatrice, rigidité de la structure, centre de gravité, poids, nombre de points d'appuis et localisation de la machine. L'isolation active des machines se fait en général en mode hypercritique.

Isolation passive ou indirecte (fig. \bigcirc): consiste à protéger les installations sensibles (balances, équipements de mesures, de laboratoires, de contrôles électroniques) contre les vibrations et les chocs transmis par les fondations ou le sol. Ces perturbations peuvent provenir de l'extérieur (routes, rails, chantiers) comme de l'environnement proche (palans, presses, machines-outils,). Pour une sélection optimale du support antivibratoire, il est conseillé de procéder à des mesures vibratoires par le biais d'une société spécialisée dans ce domaine.


Pieds antivibratoires réglables, utilisés en général pour la protection des machines outils – assez «raide» avec une déflection sous charge relativement faible ce qui est primordial pour assurer une bonne stabilité de la machine et par conséquent une bonne précision d'usinage. Ces pieds sont équipés d'une vis de réglage pour la hauteur, et d'une articulation sphérique pour garantir la position horizontale de la machine et compenser les irrégularités du sol. Modèles ROSTA type «N» et «NOX»

Amortisseurs de vibrations Type ESL

																•
N° article	Туре	Charge Gmin. – Gmax. [N] suivant Z	A non chargé	A* charge maxi.	В	С	D	E	øF	н	J	K	L	М	N	Poids [kg]
05 021 001	ESL 15	200 - 550	54	43	85	49	10	65	7	91	2	5.5	25.5	40	58.5	0.4
05 021 002	ESL 18	450 - 1'250	65	51	105	60	12.5	80	9.5	111	2.5	5.5	31	50	69	0.6
05 021 003	ESL 27	700 - 2'000	88	68	140	71	15	110	11.5	148	3	8	44	60	85.3	1.3
05 021 004	ESL 38	1'300 - 3'800	117	91	175	98	17.5	140	14	182	4	7	60	80	117	3.4
05 021 005	ESL 45	2'200 - 6'000	143	110	220	120	25	170	18	235	5	13	73	100	138	5.3
05 021 016	ESL 50	4'000 - 11'000	170	138	235	142	25	185	18	244	6	9	78	120	162	10.8
<mark>√</mark> 05 021 017	ESL 50-1.6	5'500 - 15'000	170	138	235	186	25	185	18	244	8	9	78	160	206	15.4
% 05 021 018	ESL 50-2	7'000 - 19'000	170	138	235	226	25	185	18	244	8	9	78	200	246	17.8

	N° article	Туре	Fréquence propre Gmin. – Gmax. [Hz]	0	Р	x max.	Composants (visserie zinguée)
	05 021 001	ESL 15	8.2 - 5.8	-	-	1.5	
	05 021 002	ESL 18	7.5 – 5.0	-	-	1.9	Profilés en alliage léger,
	05 021 003	ESL 27	6.2 - 4.5	-	-	2.7	supports en acier,
	05 021 004	ESL 38	5.5 - 4.0	-	-	3.6	peinture (bleu ROSTA)
	05 021 005	ESL 45	5.0 - 3.5	-	-	4.4	
N. A.	05 021 016	ESL 50	5.0 - 3.5	13.5	90	10	Profilé en alliage léger,
NA.	05 021 017	ESL 50-1.6	5.0 - 3.5	13.5	90	10	armature en fonte GS, supports en acier,
1	05 021 018	ESL 50-2	5.0 - 3.5	13.5	90	10	peinture (bleu ROSTA)

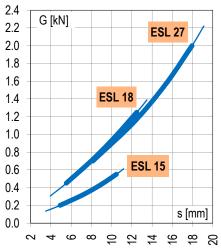
La charge maxi suivant **X** ne doit pas excéder **200** % de la capacité de charge suivant **Z**.

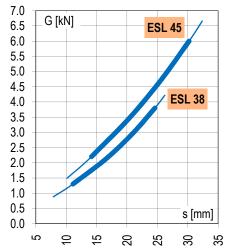
La charge maxi suivant **Y** ne doit pas excéder **20** % de la capacité de charge suivant **Z**.

Résiste à des charges en compression, traction et cisaillement.

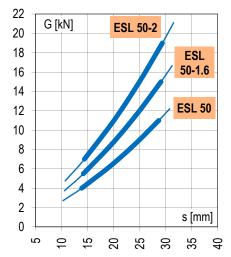
Possibilité de combiner différentes tailles de supports ESL (même hauteur et comportement en service)

* hauteur sous charge en compression G max et fluage stabilisé (après env. 1 an).

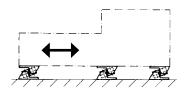


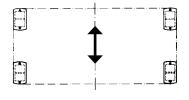


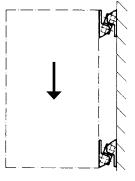
Amortisseurs de vibrations Type ESL


Courbes en compression et fluage à froid (cold flow)

Les valeurs en compression tiennent compte du fluage après quelques heures de fonctionnement. Une fois stabilisé (après 1 an) le fluage est égal à **s x 1.09.** Valeurs données à titre indicatif, il convient de les valider par des essais. Plus d'informations sur les tolérances au chapitre «Technologie».







Instructions de montage

Les amortisseurs ESL sont généralement montés dans le même sens.

Efforts dynamiques longitudinaux

Effort dynamiques latéraux

Montage vertical (mur)

Applications

Suspension active ou passive contre les vibrations et les bruits solidiens pour: balances, instruments de mesure, équipements de contrôle, machines avec moteurs (compresseurs, climatiseurs, ventilateurs, pompes, mélangeurs, ...), etc.

N° article

05 011 001

05 011 002

05 011 003

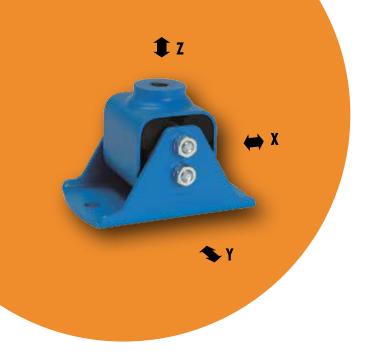
05 011 024

05 011 005

05 011 006

Type

V 15

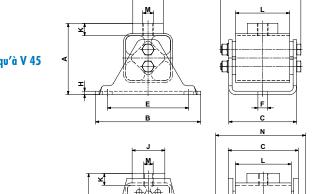

V 18

V 27

V 38

V 45

V 50



possibilité de positionner les brides à 180°.

Amortisseurs de vibrations

A	partir	de V	50	

øF

9.5

9.5

11.5

14

18

Н

3

3.5

4

5

6

10

45

60

70

Ε

55

75

100

120

140

100

	В			26:	2	
	'					
					Poids	
øJ	K	L	М	Ν	[kg]	
20	10	40	M10	59	0.3	
30	13	50	M10	74	0.7	
40	14.5	60	M12	85	1.3	

M16

M20

M20

117

143

193

18x30

2.7

4.6

7.5

	N° article	Туре	Fréquence propre Gmin. – Gmax. [Hz]	Composants (visserie zinguée)
	05 011 001	V 15	30 – 23	
	05 011 002	V 18	25 - 15	
	05 011 003	V 27	28 – 20	Profilé int. en alliage léger,
785	05 011 024	V 38	14 – 12	armature ext. en acier soudé, peinture (bleu ROSTA)
	05 011 005	V 45	15 – 12	p
	05 011 006	V 50	12 – 10	

Charge Gmin.-Gmax. [N]

suivant X et Z

800

1'600

3'000

5'000

8'000

300 -

600 –

1'300 -

2'600 -

4'500 -

6'000 - 12'000

В

80

100

130

155

190

140

Α

49

66

84

105

127

150

C

51

62

73

100

122

150

La charge maxi suivant Y ne doit pas excéder 20 % de la capacité de charge suivant X et Z.

Chocs courte durée admissibles: 2.5 g suivant **X et Z**.

17.5

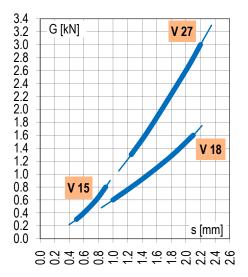
22.5

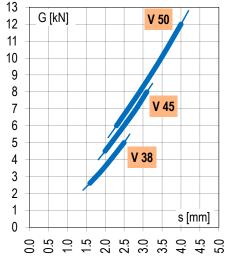
25

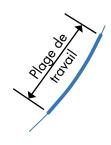
80

100

120

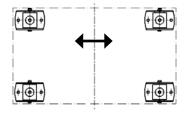

Résiste à des charges en compression, traction et cisaillement.




Amortisseurs de vibrations Type V

Courbes en compression

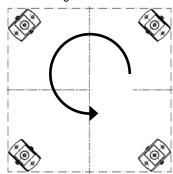
Les valeurs en compression sont données à titre indicatif, il convient de les valider par des essais. Plus d'informations sur les tolérances au chapitre «Technologie».





Instructions de montage

Montés dans le même sens, les amortisseurs type V peuvent supporter des valeurs de charge Gmax suivant \boldsymbol{X} et \boldsymbol{Z} .



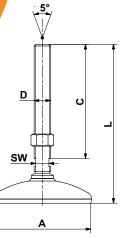
Efforts dynamiques longitudinaux

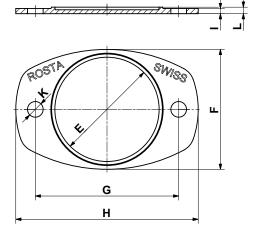
Efforts dynamiques latéraux

Montage à 45° pour machine à mouvements circulaires. Capacités de charges réduites.

Applications: mélangeurs, broyeurs

Applications


Suspension active ou passive contre les vibrations et les bruits solidiens pour: broyeurs, compresseurs, ventilateurs, pompes, transformateurs, générateurs, palans, etc. ...



Pieds antivibratoires

Type N Type NOX

Accessoire: Plaque de base type P

N et NOX

N° article	Туре	Charge Gmin. – Gmax. [N]	Fréquence propre Gmin. – Gmax. [Hz]	øA	С	D	L	SW	Poids [kg]	Composants (semelle élastomère NBR 50 ShA)
05 058 001	N 80 M12	1'500 - 6'000	25 - 22	80	55	M12	100	10	0.3	Acier zingué + peinture (bleu ROSTA)
05 058 002	N 80 M16	5'000 - 12'000	22 - 19	80	136	M16	182	13	0.5	Acier zingué + peinture (bleu ROSTA)
05 058 102	NOX 80 M16	3 000 - 12 000	22 - 19	00	130	MIO	102	13	0.5	Acier inox 1.4301 et 1.4305
05 058 004	N 120 M20	10'000 - 20'000	22 - 19	120	139	M20	105	195 16	1.0	Acier zingué + peinture (bleu ROSTA)
05 058 103	NOX 120 M20	10 000 - 20 000	22 - 19	120	139	MZU	173		1.0	Acier inox 1.4301 et 1.4305

Plaques de base type P

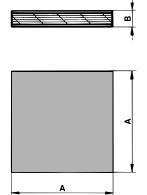
N° article	Туре	Plaque pour	øE	F	G	н	ı	øK	L	Poids [kg]	Composants
05 060 101	P 80	N / NOX 80	80	92	110	140	4	12	5	0.1	II: I/
05 060 102	P 120	N / NOX 120	120	135	170	210	5	16	7	0.3	Fonte alliage léger

Options (en fonction des quantités)

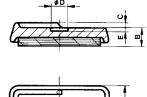
- Autres tailles et longueurs de filetage
- Capacités de charge plus élevées
- Autres protections
- Logo personnalisé

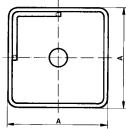
Applications

Isolation contre les vibrations et les bruits solidiens pour des machines ou appareils qui ont besoin d'un nivelage précis: climatiseurs, machines à bois, pompes, citernes, machines-outils, lignes de montage, équipements d'atelier,

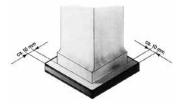


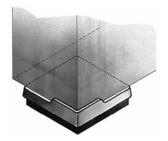
Plaques d'isolation vibratoire autoadhésives


Type ISOCOL



Type ISOCOL U





N° article	Туре	Charge Gmin. – Gmax. [N]	Fréquence propre Gmin. – Gmax. [Hz]	А	В	С	øD	E	Poids [kg]	Composants
05 030 001	ISOCOL 50	500 - 1'500	25 – 16	50	8	-	-	-	0.02	
05 040 001	ISOCOL U 50	300 - 1300	25 - 16	60	14	3	11	2	0.15	D (1
05 030 002	ISOCOL 80	11000 21000	25 – 16	80	8	-	-	-	0.05	Plaque élastomère NBR/SBR 40 ShA ISOCOL U avec support en fonte
05 040 002	ISOCOL U 80	1'200 – 3'800	25 - 16	90	15	3	14	2	0.40	130COL O avec support en fonie
05 030 003	ISOCOL 400	32'000 - 96'000*	25 – 16	400	8	-	-	-	1.30	

Instructions de montage

Pour obtenir une stabilité optimale de la machine, nous recommandons de laisser dépasser les plaques ISOCOL d'env. 10 mm de la surface du pied de la machine. Disposer les plaques de manière à obtenir une répartition des charges sur toute la surface de la plaque.

Si un «nivellement» n'est pas nécessaire, il est possible de poser l'ISOCOL U directement sous le bâti de la machine en s'assurant que la butée est en contact avec l'angle de la machine. Aucune autre fixation n'est nécessaire.

Si le bâti machine est équipé d'une vis de réglage, il suffit de placer l'empreinte centrale de l'ISOCOL U directement sous cette vis et de régler la hauteur souhaitée.

Applications

Isolation contre les vibrations et les bruits solidiens pour des machines qui disposent d'un faible encombrement en hauteur: climatiseurs, chaudières, machines à bois, pompes, équipements de bureau, machines-outils légères, équipements d'atelier,

Remarques

La déflexion sous la charge maxi. indiquée au catalogue est de 1,5 mm.

* plaque ISOCOL 400 disponible en format 400 x 400 mm. Permet de découper soi-même des plaques sur mesure. Capacité de charge: 20 à 60 N/cm²

Supports ESL utilisés comme amortisseurs d'impacts sur station de transfert pour système de convoyeur à bande

		T	ableau	ı: tail	le et q	vantité	néces	saire d	le sup	ports	ESL po	ur l'ab	sorptio	on de	l'éner	gie cino	étique		
Poids de la	ı				-						-		-				-		1
plus grosse	Hauteur	de chute	[m]																
masse [kg]	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
5	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
10	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
20	4	4	4	4	4	4	4	4	4	6	6	6	6	6	6	6	6	6	6
30	4	4	4	4	4	6	6	6	6	6	6	6	6	6	8	8	8	8	8
40	4	4	4	4	6	6	6	6	6	6	8	8	8	8	6	6	6	6	6
50	4	4	4	6	6	6	6	6	8	8	8	6	6	6	6	6	6	8	8
60	4	4	6	6	6	6	8	8	8	6	6	6	6	6	8	8	8	8	8
70	4	6	6	6	6	8	8	6	6	6	6	6	8	8	8	8	8	8	8
80	4	6	6	6	8	8	6	6	6	6	8	8	8	8	8	8	8	8	8
90	4	6	6	6	8	6	6	6	6	8	8	8	8	8	8	8	8	8	8
100	4	6	6	8	8	6	6	6	8	8	8	8	8	8	8	8	8	8	8
110	6	6	6	8	6	6	6	8	8	8	8	8	8	8	8	8	8	10	10
120	6	6	8	8	6	6	8	8	8	8	8	8	8	8	8	10	10	10	10
130	6	6	8	6	6	6	8	8	8	8	8	8	8	8	10	10	10	10	12
140	6	6	8	6	6	8	8	8	8	8	8	8	8	10	10	10	10	12	12
150	6	6	8	6	6	8	8	8	8	8	8	8	10	10	10	12	12	12	12
200	6	8	6	8	8	8	8	8	8	10	10	12	12	12	14	14	16	16	16
300	8	6	8	8		10	10	12	12	14	16	16							-
400	6	8	8	8		12	14	16	16										
500	8	8	8	10	12	14	16												
		г		144															
	ESL 38		Absorptio			. par sup	port ESL												
	ESL 38																		
	ESL 45	750 Nm																	
	ESL 50-																		
	ESL 50-2																		

Dans l'industrie minérale, les bandes transporteuses sont souvent abimées aux points d'alimentation et de transfert. Les arêtes tranchantes et abrasives des blocs de pierre ou de minerai viennent endommager le revêtement voire la carcasse de ces bandes, souvent coûteuses, et réduire considérablement leur durée de vie. Les stations d'alimentation ou de transfert et les tables d'impacts équipées d'amortisseurs ROSTA type ESL offrent une absorption efficace de l'énergie cinétique produite

par la chute de granulats ou de roches. La surface de la bande est mieux protégée des lacérations et des usures prématurées.

Documentation spécifique disponible sur demande.

Supports antivibratoires en exécution spéciale

Optimisation coûts production sur un support V 18.

Projet d'étude de coût pour un besoin important de supports V 18. L'armature extérieure est réalisée par extrusion d'un alliage léger et découpé sur une scie automatique à la longueur souhaitée.

Suspension cabine de grue mobile

Suspension sécuritive (anti-arrachement) et basse fréquence pour cabine de conducteur de grue mobile. Ces grues mobiles ont la particularité de pouvoir se déplacer sur des terrains accidentés et difficiles d'accès. La suspension élastique de la cabine doit assurer un haut niveau de confort et de stabilité latéral (pour éviter l'effet de «tanguage») lors de la conduite de l'engin. La solution: supports ESL 50 avec interfaces spécifiques client.

Suspension sécuritive d'éolienne avec supports V 45

Solution double fonction.

Les supports type V 45 évitent la propagation de vibrations et des bruits solidiens, émis par l'éolienne, vers les structures ou le bâtiment et fournissent une solution anti-arrachement et stable en cas de vent violent.

Amortisseurs d'impacts ST-R sur station de transfert pour convoyeur à bande.

Le brin porteur est soutenu par des rouleaux en guirlande équipés de suspensions élastiques ROSTA type ST-R. Les supports ST-R absorbent en grande partie l'énergie cinétique produite à l'impact de gros rochers. La fonction de ressort progressif de ces supports protège ainsi la surface de la bande des déchirures et des abrasions.

Table de sélection de suspension ST-R pour rouleaux en guirlande.

Hauteur de chute du produit (ex.: granulats)

o o					
mètr		0.5 m	0.75 m	1.0 m	1.5 m
· (dia	ø 350 mm	ST-R 38	ST-R 38	ST-R 45	ST-R 45
oduit	ø 250 mm	ST-R 27	ST-R 38	ST-R 38	ST-R 45
du pr	ø 200 mm	ST-R 27	ST-R 27	ST-R 27	ST-R 38
aille du produit (diamètre	ø 150 mm	ST-R 27	ST-R 27	ST-R 27	ST-R 27

Notions de base:

- Les supports ST-R sont toujours montés par paire sur une guirlande.
- Au moins 4 à 5 guirlandes avec supports élastiques ST-R par station de transfert.
- Pour largeur de bande de 800 à 1200 mm
- Pour densité produit de 2 kg/dm³

3 tailles disponibles:

N° article	Туре
05 091 002	ST-R 27
05 091 003	ST-R 38
05 091 004	ST-R 45

Applications!

Quelques exemples:

CH-5502 Hunzenschv
Tél. +41 62 889 04 (
Fax +41 62 889 04 9
E-Mail info@rosta.co